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ABSTRACT | Over the last decade, the emergence of pervasive

online and digitally enabled environments has created a rich

source of detailed data on human behavior. Yet, the promise of

big data has recently come under fire for its inability to

separate correlation from causationVto derive actionable

insights and yield effective policies. Fortunately, the same

online platforms on which we interact on a day-to-day basis

permit experimentation at large scales, ushering in a new

movement toward big experiments. Randomized controlled

trials are the heart of the scientific method and when designed

correctly provide clean causal inferences that are robust and

reproducible. However, the realization that our world is highly

connected and that behavioral and economic outcomes at the

individual and population level depend upon this connectivity

challenges the very principles of experimental design. The

proper design and analysis of experiments in networks is,

therefore, critically important. In this work, we categorize and

review the emerging strategies to design and analyze experi-

ments in networks and discuss their strengths and weaknesses.
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As our day-to-day activities become increasingly embed-

ded in online and digitally enabled environments, the

availability of massive scale yet highly granular data on

individuals and social interaction enables new avenues of
scientific discovery. The promise of big data [1], [2] seems

immenseVnot just for its scale and scope, but perhaps

more importantly because highly detailed individual-level

data at scale suggest tailored policies that resist reversion

to the mean in domains ranging from medicine and public

health [3]–[5] to politics, web search [6], business [7],
e-commerce [8], and product design [9]. Yet, the promise

of big data has recently come under fire for its inability to

separate correlation from causationVto derive actionable

insights and yield effective policies [10], [11]. This

criticism unveils the perhaps lesser known but burgeoning

movement of big experiments that is rapidly gaining

traction within both academic research and industry

practice. The gold standard of causal inference through
experimentation is well established in both public and

private sectors [12]–[14]. Yet, the realization that our

world is highly connected and that behavioral and

economic outcomes at the individual and population level

depend upon this connectivity challenges the principles of

experimental design that lie at the very heart of the

scientific process.

Traditional experimental designs that randomly
assign populations to control and treatment groups to

measure the comparative outcome of a treatment do not

account for the networked environment in which we

liveVthe natural connections between subjects in these

populations. When the impact of treatment can propa-

gate along these connections, the traditional notions of

experimental design break down. It is perhaps not

surprising that this realization has chiefly emerged from
the blossoming interdisciplinary field of computational

social science [15], where the focus of study is on social

behaviors that are, by their nature, interactive. Yet the

implications of connectivity on experimental design are

far reaching and necessarily affect scientific inquiry in

multiple domains, including medicine, public health,

media, politics, business, biology, epidemiology, sociol-

ogy, and many others.
However, the natural connectivity of our world does

not only present a challenge to the conventional paradigm

of experimental design, but also reveals opportunities to
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leverage connectivity through the creation of novel
treatments that incorporate both experimental subjects

and the connections between them. Done correctly,

networked treatments can allow us to understand the

basic dynamics of contagious phenomena that have been

found to play a critical role in individual and population

level outcomes, such as: the effect of dosage or multiple

exposures on individuals and populations [16]–[19], the

decay of spreading behavioral and economic outcomes
across social distances [20], and the impact of heteroge-

neity in individual and relationship characteristics on

spreading [21]–[28]. In turn, such an understanding will

allow us to assess and compare policies designed to

promote positive contagions and contain or discourage

negative contagions.

In this work, we consider several aspects of networked

randomized trial design from the perspective of the
experimental setting, the process being studied, and the

impact of connectivity. We further address emerging

methods to analyze and draw statistical inferences from

networked randomized trials. Finally, we present several

categories of novel networked treatment designs and

discuss their potential to future research.

I . THE IMPACT OF SETTING AND
PROCESS ON NETWORKED
RANDOMIZED TRIAL DESIGN

Over the past several years, the use of randomized

controlled trials in networked environments has increas-

ingly been employed by researchers across a variety of

disciplines. Though these works share in common the

feature of highly interconnected environments in which
they take place, they differ significantly in both intent and

approach. Networked randomized controlled trials

(NRCTs) can be classified along two dimensions: the

setting in which they are conducted and the process they

are designed to investigate. First, we consider the setting

in which an NRCT is conducted, which has a number of

implications on aspects of experimental design, relation-

ship to the networked environment, and on interpretabil-
ity or generalizability of findings.

A. Setting
There are three primary settings in which NRCTs can

be conducted: offline laboratories, online laboratories, and

field experiments in real-world settings (often referred to

as experiments ‘‘in the wild’’). The main differences

between these settings are: the extent to which the
experimenter can control her subjects and the context, the

extent to which subjects are aware that they are

participating in an experiment, whether networked

environments are artificially imposed or organic, the

potential scale of the experiment (in terms of population

size and experiment duration), the ability to run repeated

experiments, the ability to recruit and maintain subject

participation, and the amount and type of information on
subjects that is available for posterior analysis.

Offline laboratory settings have traditionally been used

in the fields of psychology, economics, and sociology [29],

[30]. In this setting, participants are typically recruited,

invited into a highly controlled physical environment, and

given instructions on how to participate across multiple

phases of the experiment according to well-established

protocols. Offline lab settings offer the advantages of strict
experimenter controls (over the conditions of the

environment itself, constraints on subject behavior, and

the nature of subject interactions and information flow).

For example, experimental subjects can be deliberately

primed, exposed to controlled situations, given back-

ground, and even instructed to act or interact with one

another in a particular manner. The advantage of strict

control, however, is often accompanied by the important
tradeoff that subjects are explicitly and constantly aware of

their role as experiment participants, and this awareness

may cause them to act, react, and interact differently from

their natural behavior in organic environments and in

cases where they do not believe their behavior is being

observed and assessed. This limitation may have important

implications on the generalizability and applicability of

findings to policy considerations [31]. Beyond aspects of
control, subject recruitment is often limited by proximity

to the lab, time availability, and effectiveness of recruit-

ment incentives. The limitations of subject recruitment

have two important implications: First, it constrains the

demographics of experimental populations (and thereby

the generalizability of findings) and second, the overall

population size and duration of the experiment. In

addition, the research questions that can be addressed by
the experiment are frequently limited by the premises at

which it is set. Offline lab settings also have advantages

and disadvantages with regard to the networked environ-

ment itself. In these settings, researchers may completely

specify network connections between subjects and control

communication or other forms of interaction along these

links. However, networks imposed by researchers may be

very different in structure from organic networks, and
artificially imposed network links may lack real social

context, potentially making them a poor proxy for the real

social environments they may intend to represent. These

conditions facilitate investigation of well-defined situations,

such as a collaborative solution to the network coloring

problem [32], [33], convergence to consensus through biased

voting [34], or the impact of network structure on the

performance of prediction markets [35], [36].
Online laboratory settings are relatively recent and

primarily facilitated by the pervasiveness of online

technologies and the emergence of online social network

platforms and microlabor markets (such as Amazon’s

Mechanical Turk [37]). These settings replicate the spirit

of the offline lab in that subjects are explicitly aware that

they are participating in an experiment, may be primed,
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given background information, and requested to act or
interact with one another in a particular manner. To some

extent, online lab settings reduce constraints on experi-

mental scale and subject recruitment in terms of

geographic proximity and duration of participation.

Importantly, unlike their offline counterparts, online lab

settings can leverage existing platforms to enable subject

recruitment at significantly reduced costs [38], [39] and

thus have the potential to enable experimentation at much
larger scales, though, like their offline counterparts, online

lab settings may also suffer from concerns of generaliz-

ability arising from the makeup of microlabor markets

employed for subject recruitment [40]. In addition, these

settings can also leverage the application programming

interface (API) of existing platforms or data sharing

agreements with their operators to collect detailed

information about subjects, their social network connec-
tions, and to control or mediate subject interactions [41]–

[44]. However, these environments necessarily sacrifice

strict experimental control in terms of the conditions of

the offline environment itself, constraints on subject

behavior, and the nature of subjects (potentially unre-

corded) offline and online actions and interactions, as well

as information flow to and (in some cases) between

subjects. Experiments in online lab settings also face a
number of new challenges such as maintenance of subject

participation (e.g., user churn) and concurrency of subject

participation (i.e., experiment design may require simul-

taneous presence of the subjects)1 [40]. As in the case of

offline labs, the findings and inferences from experiments

conducted in online lab settings may have limited

applicability to real-world environments because individ-

ual behavior may be affected by the knowledge that
subjects are part of an experiment and are being observed.

Unlike offline lab settings, online labs that leverage

existing social network platforms permit experiments in

real networked environment while exerting some degree

of control of interactions and information flow along

network links (e.g., [44]). Thus, online lab settings

circumvent some limitations of their offline counterparts

making them uniquely suited to address well-defined
situations such as the role of network in cooperation [39],

[45], public goods [39], and investment games [44] as well

as its impact on health behavior [41]–[43].

In contrast to offline and online labs, field experiments

in real-world settings do not exert strong controls over

subjects’ environments, but instead assess the impact of

randomized assignment directly in the natural environ-

ment of the system being studied [46]. Online field
experiments in particular can provide researchers with

detailed data on subject behavior (online and even

offline)2 that is not biased by knowledge of participation

in the experiment3 and can be conducted at extraordinarily
large scales and over arbitrarily long durations. In some

sense, online field experiments are a natural extension of

A/B testing procedures that have become part of the

standard policy for large online platforms to assess and

evaluate features or the impact of platform design

elements on the overall user experience [13], [47]–[49].

Because these settings facilitate experiments that can be

conducted without or with limited subject knowledge, care
must be taken to assess the ethical considerations of these

practices and to abide by the standards of practice

governing human subjects research. This concern tends

to be more central to experiments addressing fundamental

social science or economics research questions than in the

case of routine A/B testing. Controversy surrounding

recent research employing an online field experiment to

study emotional contagion on Facebook emphasizes these
concerns [50], [51]. In addition, researchers that conduct

experiments in real-world networked environments with

treatment impacts that can propagate should also consider

the ethical implications of treatment impact on individuals

outside the experimental population. It should be noted

that despite the necessity for strong ethics, field experi-

ments in real-world settings provide strong inferences and

insights directly applicable to real-world systems and thus
play a critical role in assessing the potential efficacy of

important social and economic policies. Additional aspects

of design of field experiments in natural settings relate to

the concerns that the desired interventions should appear

to be organic, in some cases not clearly detectable between

subjects, and generally should not observably interfere

with the normal operation of the community, platform, or

online system. These concerns are important for rigorous
experimental design but also to assure that experimental

interventions do not adversely affect the business of firms

that collaborate with researchers. Like online lab settings,

online field experiments are limited by the capacity for

experimenters to design interventions or otherwise control

the environment. For example, it may be more difficult to

expose subjects to a desired intervention, and other

experimental controls may be limited by the features of
the online platform or system. In many cases, field

experiments identify effects of specific platform features,

such as the impact of (in)visibility of user activity on peer

interactions on an online dating site [52], the impact of

social cues in word-of-mouth advertising on ad perfor-

mance [53], the role of social platforms in diffusion of

information [54], the study of the mechanism of coupon

sharing on Facebook [55], and the value of the content
author’s identity in evaluation of that content by the

reader on news aggregation websites [56]. Besides the

advantage of conducting the experiment in organic

1See, for example, the sections on dropouts and the waiting room
in [39].

2For example, many online platforms are location aware.

3In many cases, experiments conducted in natural settings may notify
subjects indirectly through posted policies on user research in the
platform or online site’s terms of use.
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settings and thus observing natural behavior, real-world
settings often enable research at immense scale, facilitating

observation of subtle effects or heterogeneous response to

interventions.

Finally, while not the focus of this work, the

occurrence of natural experiments arising from exogenous

variation in real-world systems provides yet another

setting in which researchers may pursue causal inference.

Unlike formal experiments which require significant
investments of time and resources from experimenters,

occasionally induce ethical concerns, and may noticeably

interfere with user experience, the potentially wide-

spread occurrence of natural experiments may permit

causal inference on observational data at large scales and

may be used prior to experimentation to inform

experiment design. Having discussed the implications of

setting on the design of NRCTs we now turn to a
discussion of the process that NRCTs are designed to

investigate.

B. Classification by Process
Experiments in networked environments can also be

classified by the process they are designed to investigate,

including the exploration of social and economic beha-
viors, the underlying dynamic microscopic and macro-

scopic mechanisms governing these behaviors, and the

resulting dynamics of outcomes at individual, group, and

population levels. Many NRCTs focus on investigation of

propagation processes such as dissemination of innovation,

spread of information and behaviors, or adoption of new

products. Identification of factors affecting these processes

is vital for informing managerial or public policies
intended to promote or discourage population-level out-

comes. Factors that affect process dynamics include initial

conditions (such as targeting or seeding); dosage and

temporal aspects (such as the extent and timing of multiple

exposures); the willingness of subjects to contribute,

prevent, or direct the viral spread; the susceptibility of

subjects to peer influence, the social network topology;

and modification of the process itself (e.g., viral product
design [22]) In practice, policies may need to leverage

one or more of these mechanisms to achieve a desired

outcome [57].

The process under investigation is often signified by

how the experimenter measures the response to their

intervention. When the effect of intervention(s) can

propagate, the experimenter is not limited to analyzing

the response behavior of directly treated subjects, but may
instead focus on the response behavior of other subjects or

groups in the population (such as peers of directly treated

subjects or groups of locally connected treated subjects).

Analysis may therefore focus on one of three aspects: the

direct effect of the treatment on the treated (ETT)

subjects, the effect of the treatment on the cotreated

(ETC), or the effect of the treatment on the untreated

(ETU).4 To avoid ambiguity, we adopt a simple definition
of treatment that is defined for each experimental subject

as the alteration of that subject’s experimentally controlled

experience. We leave discussion of more complex

networked treatments not covered by this definition to

Section III. The effect of treatment may be measured at the

level of individual subjects, aggregated over groups of

subjects, or aggregated effects of the treatment on the

population at large. In addition, researchers may be
interested in how the effect is moderated by individual

attributes, local-network attributes, or the global structure

of the network. In this section, we categorize existing

research by process and discuss the implications on

experimental design and choice of setting.

Networked experiments that study processes

concerned with the effect of treatment on the treated

(ETT) represent the extension of conventional nonnet-
worked experiments to networked environments. It is

important to note that for many processes of interest

(particularly those that involve social components) tradi-

tional experimentation may be affected by an underlying

network, even when the network is not explicitly observed

or recognized by experimenters. In some cases, interaction

between subjects may be an unavoidable nuisance, while

in other cases, it may be central to the process under
investigation. For example, Bapna et al. [52] study the

impact of enabling anonymous profile viewing for users of

an online dating site, an intervention that is meaningless in

the absence of social interaction. In another experiment

Bakshy et al. [53] vary the number and the intensity of

social cues accompanying online ads to establish the

degree to which they can affect the ad performance. One

distinct class of research questions that focus on ETT
addresses subjects’ response to population level social

signals such as conformation to peer pressure. First

identified with the now classical sociologist techniques

in lab or small-scale field experiments conducted in the

1950s and 1960s by Asch [58] and Milgram et al. [59],

these phenomena can now be examined at scale. For

example, in a sequence of experiments, Salganik et al. [38],

[60] study the impact of popularity-based content ordering
on the propensity to consume cultural products (music). In

these experiments, the authors randomize perceived

popularity of songs to distinguish the impact of popularity

on subjects’ decisions to consume music from that of song

quality. The rising prevalence of ranking and rating

mechanisms in virtually every domain makes these types

of experiments both theoretically and practically impor-

tant. The sheer scale of the data can permit subtle
inferences that require high sensitivity and provide enough

4This terminology should not be confused with the traditional
terminology of the average treatment effect on the treated (ATET) and the
average treatment effect on the untreated (ATEU) which pertain to
analysis in nonnetworked environment to provide counterfactual
estimates that avoid selection bias in the designation of treated
populations.
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resolution to understand the moderating effect of different
personal and content attributes on consumption decisions.

Depending on the setting and control available to

experimenters, connectivity between subjects may allow

for undesirable spillover effects (interference) that con-

taminate or bias inferences on ETT. The potential scale

and the scope of networked experiments can facilitate

inferences on the ETT that emerge as a result of feedback

mechanisms (due to spillover effects). For example,
individuals subject to treatment can indirectly influence

others by contributing their manipulated opinion to

population-level social signals. Such spillover effects may

affect both untreated and treated subjects (through

feedback) resulting in herdlike phenomena that has the

potential to sway collective (population-level) behavior,

potentially in undesirable ways, leading to important

implications for rating, ranking, and collaborative feed-
back systems. This effect was demonstrated at scale by

Muchnik et al. [61] who show that minor manipulation of

the perceived scores of user-generated comments guided

consequent user votes and resulted in herding, signifi-

cantly affecting the content’s final score. Subsequent

research by Godinho de Matos et al. [62] found that

manipulation of rank and population-level social signals

for video-on-demand titles yields only a short-lived effect
on herding behaviors, emphasizing that such signals may

be highly context dependent. From the experiment design

perspective, the feedback following the randomized

manipulation of the content or its ranking may mingle

the treatment with endogenous processes. In fact, due to

the aggregation of the collective opinion into population

level social signals, all but the first impression following

the treatment are conditional on the response (or
nonresponse) of the preceding subjects. We discuss

detailed strategies to address the related interference

issues in Section II.

Networked experiments that study processes

concerned with the effect of treatment on the cotreated

(ETC) include processes that involve local network

externalities. Understanding such processes is central to

explaining the value of network goods, products, or
features and necessary for modeling of propagation of

knowledge, rumors, and information in general. The

recent emergence of pervasive online social platforms

enables experimentation on ETC-related processes that

can yield relevant insights of value to both platform owners

and academics. For example, recent work on network

bucket testing extends A/B testing procedures to assess the

ETC of social product features. Additionally, many
platform sponsors assess social features through beta

rollouts (e.g., Gmail) that allow users to invite their peers

to coadopt, making inferences on ETC of high practical

importance. For this reason, studies of ETC are often

conducted in real-world settings, though the available

controls of offline and online lab settings make them

equally suitable to study cotreatment.

Processes concerned with the effect of treatment on
the untreated (ETU) are the focus of the rapidly expanding

field of research into contagious phenomena across

multiple disciplines. Many recent randomized experi-

ments conducted in networks examine contagion process-

es in the context of diffusion of behaviors (e.g., voting [20]

or health behavior [41]), emotions [50], peer influence, or

product placement (seeding) [21], [63], [64], which aspire

to inform polices aimed at the promotion or containment
of contagions in social networks. These studies are

designed to identify the impact of a variety of factors on

contagious spreading. Several studies investigate the

moderating effect of individual characteristics [52],

dyadic properties [21], [53], [64] as well as the impact

of attributes of a spreading product, norm, or information

[20], [22], [50] on diffusion processes on networks.

Causal identification of factors that affect subject
behavior can be achieved through exogenous manipula-

tion of these factors, allowing researchers to distinguish

causal impact from alternative explanations of correlated

behavior such as homophily, assortative mixing, and

other endogenous confounds [65]–[67]. These experi-

ments are based on selective application of treatments to

focal subjects and observation of the response of their

immediate or remote peers. Typical treatments include
randomized gifting, variation of pricing, or manipulation

of product features. More sophisticated treatments focus

on randomly controlling the interaction between in-

dividuals and their peers, aiming to test how peer

influence is moderated by subject, peer and dyadic

characteristics. For example, Aral and Walker [64] test

the moderating effects of individual and dyadic char-

acteristics on word of mouth by issuing Facebook
notifications to randomly chosen peers of experimental

subjects. Such networked treatments go beyond the

definition of simple treatment that we have adopted

here. We discuss these types of treatments in more detail

in Section III. Other contagion experiments examine the

effect of local and large-scale network topology on

diffusion of information and behaviors [32]–[34], [39].

The general goal of these studies is to detect the effect of
network attributes (such as degree, clustering, assorta-

tivity) on network diffusion processes and the effect they

have on individual and collective behavior such as

convergence to consensus [34], [39], a collaborative

solution to network coloring problems [32], [33], and the

spread of health-related behaviors [41]–[43]. Experi-

ments on contagion processes may constrain the choice

of experimental setting. For instance, exogenous manip-
ulation of local or global social network structures

requires a setting where tight control over individuals’

connections is possible. Such control can be achieved in

offline or online laboratory settings where the experi-

menter has full control over connections and/or informa-

tion visibility, but may be less feasible in real-world settings

where connections emerge organically and cannot be
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exogenously manipulated5 [32]–[34], [39], [41], [42]. On
the other hand, studies that examine the (potentially

subtle) impact of individual attributes on contagions

typically require rich data sets at large scales that cover

the wide spectrum of attributes. Such studies are, therefore,

best suited to settings that enable large-scale experimenta-

tion where data is readily available, as is the case for real-

world field experiments conducted on online platforms.

II . IMPACT OF CONNECTIVITY ON
RANDOMIZED TRIAL DESIGN

The consequence of connectivity on inference in random-

ized trials is best understood by examining the Rubin

causal model, which presents a fundamental approach to

drawing causal statistical inferences from randomized

experiments. A chief assumption of this approach is the

stable unit treatment value assumption (SUTVA) which
demands that the observed outcome on one unit (subject)

should not depend upon treatment assignments to other

units (subjects) [68], [69]. When the effect of treatment

can propagate, this assumption is violated and the standard

machinery of statistical inference from randomized trials

must be reevaluated. In some cases, where propagation of

treatment effects is well understood, the SUTVA can be

reestablished by redefining treatment to multiple treat-
ment specifications that include indirect spillovers.

However, in the highly connected environments in which

we are interested (and particularly where the nature of

treatment propagation is unknown), simple respecification

of treatment to rescue the SUTVA is not feasible.

In recent work, Manski [70] has taken the first steps

toward building a theory of identification in the presence

of interference by extending the SUTVA from the classical
assumption of noninteracting units, which he refers to as

the assumption of individualistic treatment response

(ITR), to define multiple classes of assumptions based on

the nature of interaction (or lack of interaction) between

units. For example, he defines the assumption of constant

treatment response (CTR) as the case when each

individual in the experimental population has some

reference group (of other units or subjects) for which his
or her outcome remains constant when treatment varies

beyond his or her reference group. He further relates these

assumptions to models of endogenous interactions through

systems of simultaneous equations that connect treatment

and outcomes of all individuals in the population to the

outcome of any particular individual. These considerations

lead to restrictions on when inference from observed

outcomes can be point identified and, importantly, how
this relates to treatment designation.

Practical strategies to account for connectivity in
randomized trials are currently an active topic of research

and fall into two general categories: inference strategies

and design strategies [64]. The former strategies address

interference after an experiment has been conducted,

during the inference or analysis phase, while the latter

strategies address the potential for interference prior to

experimentation by modifying aspects of the design of

randomized trials, such as treatment assignment proce-
dures, to minimize interference.

To clarify our discussion of these strategies, we

introduce some terminology to describe treatment and

exposure to treatment. For the purposes of simplicity, we

assume for now that experimental treatments apply

directly to individuals (or units) in the population and

leave complex treatment types that may include simulta-

neous experimental controls on individuals, their peers,
and the nature of their interaction(s), for subsequent

discussion. We also assume, for simplicity of discussion,

that treatments are temporally static, assigned prior to the

experimental period and consist of only one kind of

treatment (i.e., treatment or control; though these

definitions may easily be extended to the case of multiple

treatment types). We define direct treatment as the

alteration of each individual’s experimentally controlled
experience throughout the course of the experiment, as

specified by the direct treatment vector Tdir
i , where i

indexes experimental subjects. This follows the conven-

tional usage of the term ‘‘treatment’’ in traditional RCTs,

and its assignment is directly controlled by the experi-

menter. In contrast to direct treatment, we define indirect

treatment as the experience induced on peers of directly

treated users (through their direct connection or through
one or more pathways of multiple connections in the

network) as a consequence of direct treatment, as specified

by the indirect treatment vector Tind
ik . Unlike direct

treatment, indirect treatment is not exogenously assigned,

but arises instead from both direct assignment, the (often

endogenous) network itself, and the (often endogenous

and unknown) dynamics of propagation of the impact of

direct treatment. The subscript k is included to enumerate
the multiple types of indirect treatment that arise through

exposure even given our assumption of one kind of direct

treatment. For example, one type of indirect treatment

may be defined as having one and only one treated

neighbor (regardless of treatment assignments at larger

network distances from the subject); another type may be

defined as having two treated neighbors who are not

connected to one another (regardless of treatment assign-
ments at larger network distances from the subject). As

these examples suggest, the multiplicity of indirect

treatment types depends on assumptions about exposure

and propagation. As a consequence, indirect treatment

may also be time dependent. For completeness, we also

define the total effective treatment as the combination of

both direct and indirect treatment Ttot
k .

5We note that online lab settings and real-world online settings that
utilize platform features may effectively alter network structures
exogenously by disabling certain types of interactions, rendering these
settings suitable for studies aimed at inferring the impact of local or global
network structures on contagion dynamics.
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A. Inference Strategies
Inference strategies attempt to remove or reduce bias

and/or variance from estimates that identify the impact of

treatment in connected settings and typically assume a

specified vector of treatments. Inference strategies are

distinguished by the type of estimation strategy, from the

fundamental estimate of the average impact of treatment

to more sophisticated modeling techniques.

In some recent work, researchers have developed
methodologies to partially account for statistical interfer-

ence in NRCTs through modified average treatment effect

(ATE) estimators with reduced bias [71], [72]. In these

methodologies, an exposure model is assumed and

employed to enumerate multiple total treatment types,

Ttot
ik . A modified Horvitz–Thompson or Hajek estimator is

then constructed to account for the bias introduced by the

propensity to receive any of the total effective treatment
types. The multiplicity of the total effective treatments is

determined by assumptions of the exposure model. For

example, for an exposure model that assumes propagation

to fall to zero beyond one network link, all individuals with

no treated neighbors will have a total effective treatment

equal to their direct treatment, regardless of the treatment

status of peers at network distance greater than one.

However, it is clear that for arbitrary exposure models
(where the propagation of the treatment effect may not fall

sharply with increasing network distance), estimating the

causal impact of the treatment becomes severely limited,

as the number of potential indirect treatments ðKÞ
becomes increasingly large relative to the size of the

experimental population. Coppock and Sircar summarize

this difficulty succinctly:

‘‘The basic difficulty inherent in design of

experiments facing interference between units is

that it reduces power. If units are exposed to

complex spillovers, the outcomes revealed by those

units are not useful for the estimation of any

quantities of interest’’ [73].

Nonetheless, modified estimator approaches may be
particularly fruitful when strong assumptions of limited

propagation apply or when the experimenter can exert

strict control over propagation. However, when knowledge

of the propagation (and hence exposure) is unknown,

practitioners must turn to empirical evidence to first

adjudicate between multiple potential exposure models. It

is important to note that the statistical interference

methods discussed above are not designed to discriminate
between different exposure models. This highlights a

critical challenge in analysis of networked experimenta-

tion in novel contexts: researchers must simultaneously

estimate both the treatment impact and the nature of

exposure dynamics.

Other inference strategies go beyond modification of

estimates of the ATE impact and incorporate constraints

on inference in more sophisticated approaches to model
treatment impact. Modeling in NRCTs has three primary

advantages over ATE estimation. First, use of models that

incorporate interactions of characteristics or attributes

with both direct and indirect treatments allow inferences

surrounding the heterogeneity of treatment impact. Such

inference can be used to understand and predict how

different subpopulations would respond to treatment.6

This is particularly important from the standpoint of
personalized policy development. While true assessment

of the efficacy of personalized policies should be verified

by evaluating interventions specifically designed to affect

targeted subpopulations, inferences on heterogeneous

treatment impact can act as a guide to develop personal-

ized policies by identifying subpopulations (from the wide

range of possibilities) for which treatment impacts

significantly differ. Second, modeling permits identifica-
tion of moderators of treatment impact ceteris paribus,

allowing researchers to partially disentangle the treatment

impact of correlated characteristics, provided there is

significant diversity in subject populations. Third, model-

ing strategies allow researchers to employ tools such as

censoring, stratification, and matching to estimate the

impact of indirect treatment on individuals who have

received different exposures relative to those in appropri-
ate reference groups that have not. In models that employ

duration analysis, censoring techniques can be used to

censor outcomes of users only after they are exposed to

complex indirect exposures. This technique allows re-

searchers to reduce bias in estimates of treatment impact

while both retaining the maximal amount of outcome data

in their analysis and correctly parameterizing their

ignorance regarding what might have happened had
complex indirect exposure not occurred. For example,

Aral and Walker [22] employ censoring in hazard models

to exclude subject outcomes from analysis only after they

have been indirectly exposed to multiple treated peers

(with potentially different treatments). Unlike the mod-

ifications to ATE estimators discussed above, censoring

techniques do not require complete specification of an

exposure model, but instead assert limiting assumptions
regarding exposure in exchange for both a loss of statistical

power for censored observations and the inability to

estimate the impact of some complex exposures. This is an

important tradeoff. Stratification (in nonduration model-

ing) and dynamic risk group assignment (in duration

modeling) further allow researchers to partition subjects

according to different indirect exposures they may have

received and separately estimate the impact of these
indirect exposure on subject outcomes. Stratification on

indirect exposure types is also subject to assumptions

regarding the nature of exposure (as indirect exposure

6Recent work on analyzing heterogeneous treatment effects with
dependent data provide a variety of bootstrap methods to properly handle
uncertainty [85].
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types must be specified prior to stratification), but also
does not require a complete specification of the exposure

model. Instead, complex exposure types excluded from any

strata or risk group are effectively censored (in duration

models) or truncated (in nonduration models), sharing the

associated tradeoffs with censoring discussed above.

Importantly, because indirect exposure is endogenously

determined (by the natural connectivity of the network

and in some NRCTs potentially also by endogenous
propagation of the treatment), concerns of generalizability

apply. Specifically, populations receiving different types of

indirect exposure to treatment may be fundamentally

different (in terms of observable and unobservable/latent

characteristics) from the representative population at

large. Researchers employing these techniques should,

therefore, take care in generalizing inferences on the

impact of complex indirect exposures to situations that
would not arise organically (such as policies that

exogenously determine complex indirect exposures).

Matching techniques generally may be employed to

establish appropriate reference groups and specifically to

control for the propensity to receiving a particular type of

indirect exposure to treatment and to balance the makeup

of direct or indirectly treated populations relative to

controls. Matching on propensity to receive a type of
indirect treatment is comparable to the modifications to

ATE estimators discussed above, but matching techniques

can be generalized to simultaneously account for both

propensity to be exposed and endogenous variations in the

makeup of subpopulations that receive different types of

direct and indirect exposure. It is important to note that

relative to fundamental ATE approaches, modeling

approaches may often involve strong assumptions regard-
ing the mechanism of treatment response. For this reason,

researchers must establish that these assumptions are

theoretically grounded and reasonable through empirical

validation and ensure that the robustness of inferences to

model specification is thoroughly explored.

B. Design Strategies
In contrast to inference strategies, design strategies

alter aspects of the design of the experiment itself in order

to constrain the manner of interference between subjects.

Typically design strategies involve rearranging assignment

of treatment to subjects in a manner that incorporates

information on network connectivity. Existing design

strategies fall into two categories: treatment clustering

strategies and treatment separating strategies. Treatment

clustering strategies seek to closely approximate the
counterfactual conditions in which the entire network is

exposed to either treatment or control by assigning

subjects in well-defined local subnetworks the same

treatment. In contrast, treatment separating strategies

seek to assign treatments to experimental subjects that are

well separated from one another in network distance in

order to minimize interference. Existing design strategies

to deal with interference also differ by whether they are
appropriate for making unbiased inferences on the effect

of treatment on the treated (ETT), cotreated (ETC), or

untreated (ETU) members of the populations and the

extent to which they are suitable for empirically inferring

(rather than assuming) exposure dynamics.

Treatment clustering strategies relate treatment desig-

nation to the natural structure of the network in terms of

clusters, components, and communities.7 These strategies
stem from attempts to extend A/B testing to networked

environments where treatment is oriented around en-

abling new features or products in social network plat-

forms that exhibit strong local network externalities. For

example, the evaluation of a new social messaging feature

would be inaccurate if the feature was not simultaneously

available to individuals and their direct network peers with

whom they would typically communicate. Treatment
clustering strategies use (a variety of) algorithms to assign

the same treatment to clusters of well-connected nodes

[17], [74]. Ugander et al. [75] use the terminology

‘‘network exposed’’ to describe the condition under which

an individual and some sufficient number or fraction of his

or her peers have received the same (direct) experimental

treatment. They show that, using their technique of graph

cluster randomization, an efficient dynamic program can
be used to exactly calculate the probability that each

individual in the network is network exposed. When an

exposure model is specified, these probabilities can be

used in modified ATE estimators to reduce bias. Moreover,

they also show that under the right conditions, graph

cluster randomization can significantly reduce ATE

estimator variance. Airoldi et al. [76] also consider a

simple sequential randomization algorithm that clusters
direct treatments in local networks as well as an insulated

neighbor randomization algorithm that relaxes treatment

conditions to partial neighborhoods to yield a higher

probability of valid causal estimates where treatments are

matched with counterfactual controls. In subsequent

work, Eckles et al. [72] point out that many tractable

exposure models do not realistically account for the role of

peer effects in mediating exposure. Instead, they consider
dynamic outcome generating processes in discrete time for

which a subject’s response at time t depends upon their

own direct treatment, as well as the direct treatment and

behavior of their peers at time t� 1. Outcome generating

processes go beyond specification of exposure alone and

specify a mechanism by which responses are induced by

direct and indirect treatments. They employ graph cluster

randomization on several artificial models of networks
assuming fractional neighborhood treatment response

7Clusters are subgraphs into which an overall network is partitioned
according to some clustering rule. Components are sets of nodes that are
connected to one another via network paths of any length. Communities
in networks are defined as sets of nodes which are well connected to one
another and relatively sparsely connected to other nodes in the
population.
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(FNTR) in which a subject is assigned the treatment
condition of a specified fraction of their peers. Subjects

without a sufficient fraction of peers assigned to treatment

or control conditions are excluded from analysis. Using

simulations of outcome generating processes on artificial

network models, they show that in the presence of peer

effects that mediate exposure, graph clustering randomi-

zation can reduce bias in modified ATE estimators with

comparably small increases in estimator variance when the
network itself exhibits sufficient clustering. Thomas and

Finegold [77] employ a form of indirect treatment

clustering. They consider random treatment assignment

and use a pseudorandomized trial (where mock treatment

designation does not alter user experience whatsoever) to

demonstrate that simple t-tests on the impact of indirect

treatment (ETU) spuriously bias p-values toward zero.

They implicitly assume that exposure does not extend
beyond a network distance of one and consider permuting

direct treatment assignment so that all peers of directly

treated subjects have the same unequivocal indirect

treatment designation. They show that clustering of

indirect treatments restores uniform p-value distributions

for t-tests on the impact of indirect treatment, as would be

expected given the mock nature of the treatment. As the

above discussion should make clear, treatment clustering
strategies can reduce bias and variance in inferences on

ETC. However, these strategies necessarily reduce hetero-

geneity in types of indirect exposure, making them less

suitable for inferences on the effect of the treatment on the

untreated (ETU), including the ability to empirically

evaluate the dynamics of contagious phenomena, such as

how multiple indirect exposures add together or how

exposure decays over social distance. In some cases,
indirect treatment clustering strategies may be appropriate

for inferring the effect of treatment on the untreated

(ETU), when exposure does not extend beyond a network

distance of one. Importantly, treatment clustering strate-

gies may yield unbalanced assignment of nodes to

treatment conditions in terms of individual-level or

network characteristics of subjects (such as degree).

Specifically, Ugander et al. [75] point out that subjects
with high network degree are less likely to be assigned to

extreme definitions of cotreatment (e.g., an effective

treatment where most or all of a subject’s peers have the

same treatment). Likewise, Thomas and Finegold [77],

who primarily focus on the impact of indirect treatment,

discuss concerns of selection bias for indirectly treated

subjects in terms of bias in the distributions of individual

characteristics (that may arise from, for example,
homophily), and network characteristics (such as degree),

that arise as a consequence of designating treatment

either randomly or with treatment clustering strategies.

While reweighting designation of direct treatment can

alleviate selection bias on indirectly treated subpopula-

tions, it necessarily induces selection bias in the directly

treated subpopulations, as they point out. One promising

approach to address concerns of balance is presented in
the recent work by Nishimura and Ugander [78] on graph

partitioning.

Treatment separating strategies attempt to reduce

interference between subjects by constraining direct

treatment assignment to subjects that are well separated

from one another. Coppock and Sircar [73] define the

SUTVA degree ð�Þ as the network distance beyond which

spillover does not occur.8 In this methodology, well-
defined direct and indirect treatment types on which the

experimenter would like to make inferences are specified

in advance and all other (complex) exposures to treatment

are minimized through a two-stage random direct treat-

ment assignment algorithm that incorporates the assump-

tion of the SUTVA degree. Modifications of the direct

treatment assignment algorithm can be performed to

permit inferences on the dynamics of contagious phenom-
ena such as how indirect exposures to treatment add

together or decay over social network distance. Analysis

procedures may also employ modified estimators or other

modeling techniques that adjust for the propensity to

receive an indirect treatment. Consequently, treatment

separating strategies are ideal for estimating the effect of

the treatment on the untreated (ETU). Because this

strategy primarily seeks to separate treated subjects from
one another in network distance, it is less appropriate for

inferring the effect of the treatment on the cotreated

(ETC) when a substantial number of cotreatments among

directly connected individuals is desired. It is important to

note that the assumption of a SUTVA degree excludes

cases when maximal spillover distance can depend on the

number of indirect exposures. For example, in complex

contagion scenarios, a subject may be more likely to be
affected by multiple directly treated peers at distance

�þ 1 than by a single peer at the same distance. Post hoc
inferences on how exposure adds and decays over social

network distance (within the SUTVA distance) obtained

from treatment separating approaches can be examined to

evaluate whether this is a concern. Practitioners may wish

to modify the direct treatment assignment algorithm to

reduce multiple exposures at the cost of reducing treated
population sizes and statistical power. Just as treatment

clustering schemes may induce selection bias in individual-

level or network-level characteristics of directly or

indirectly treated populations, as a consequence of

clustering, treatment separating schemes may also induce

a similar selection bias. The algorithmic removal of

subjects within a distance � from treated and indirectly

treated subjects from consideration to receive a direct
treatment could impact the balance of treated and

indirectly treated subpopulations in terms of individual-

and network-level characteristics. The presence of

homophily on individual-level characteristics in a variety

8The definition of SUTVA distance is closely related to the concept of
r-nets in metric spaces, which is discussed by Ugander et al. [75].
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of real-world networks emphasizes this concern. As such,
care should be taken to ensure that directly and indirectly

treated subpopulations are balanced with respect to one

another and any reference groups. When this is not the

case, the two-stage random direct treatment assignment

algorithm can be modified to reassert balance.

Interestingly, both treatment clustering and treatment

separating strategies require assumptions about exposure

distance introduced through the choice of the cluster size
in the former case, or through the specification of SUTVA

degree in the latter case. When empirical evidence is

unavailable to inform these decisions, practitioners may

employ combinatorial designs to vary cluster sizes in

treatment clustering strategies or to empirically infer

decay of exposure across social distance in treatment

separating strategies. In many circumstances, quasi-

experiments that apply matching to observational data
may act as a useful guide to inform experimental design

surrounding exposure assumptions and the requisite

statistical power necessary to infer significant effects

[63], [66], [79]. In addition, both treatment clustering and

treatment separating strategies assume that the network

structure is known. While unbiased sampling can be

achieved through a variety of means, e.g., [80] and [81], it

may not always be feasible. When only partial information
on network structure is available, adaption of the strategies

presented here in combination with network sampling

techniques may be required. This is another avenue for

potential future research.

III . NETWORKED TREATMENTS

The natural connectivity of our world does not only
present a challenge to the conventional paradigm of

experimental design, but also reveals opportunities to

leverage connectivity through the creation of novel

treatment mechanisms that incorporate both experimental

subjects and the connections between them. Where simple

treatments are defined as those that are applied to and

alter an individual subject’s experience, networked treat-

ments involve interventions that may alter how connected
subjects interact with one another, encourage or incentiv-

ize a subject to promote or influence the actions of one or

more peers in a particular way, affect shared experiences

and interactions between groups of subjects, or even

encourage the formation of new connections between

subjects. Such networked treatments are in part made

possible by the emergence of online social networking

platforms and other digital social environments that
permit firm mediation of social interactions to both

platform owners and to other researchers through APIs

[49], allowing for varying degrees of experimental control

along the channel of social interaction [55], [82].

Networked treatments also enable experiments that can

act as important test beds for emerging social policies

aimed at producing or altering population-level change.

Categories of networked treatments include peer-oriented
incentive schemes, communication-altering schemes,

subject-grouping schemes, and network topology manip-

ulation schemes. Peer-oriented incentive schemes reward

subjects when their peers take a particular action, such as

purchasing a product or service [83], making certain

choices [34], [39], spreading a particular piece of content

or message (such as encouragement to have a flu shot or

get an HIV test), or encouraging referral chains [84] that
yield desired outcomes (such as a solution to a crowd-

sourced problem). Communication-altering schemes may

send automated referrals from a subject to his/her peer

[22], randomize the target of automated messages from a

subject to randomly chosen subsets of his/her peers [21], or

even block or moderate information exchange between

subjects [50], [83]. Subject-grouping schemes may randomly

designate experimental subjects to social environments [such
as pairing participants with online health buddies [41]–[43]

or designating subjects to online study groups in massive

open online courses (MOOCs)] contingent upon subject or

environmental characteristics. Network topology manipula-

tion schemes are designed to test the implications of network

topology for social computation processes such as collabora-

tive problem solving of competitive games [32]–[34], [39],

[45]. Depending on type, instantiation, and context,
networked treatments may either remain susceptible to or

circumvent interference effects. Future research should

evaluate when and to what extent emerging design and

inference strategies to address interference can be extended

to networked treatments or whether new strategies are

required.

IV. DISCUSSION/CONCLUSION

The increasing prevalence of networked environments and

the natural connectivity of our world present both

challenges to existing design and analysis methods for

randomized trials and opportunities to conduct novel

experiments involving networked treatments. It is likely

that large-scale experimentation in social networks will

lead to significant advances in the social sciences, just as
conventional randomized controlled trials advanced med-

icine in the second half of the 20th century. However, just

as the widening use of RCTs in medicine, psychology, and

other domains necessitated the development of specialized

methodologies and analysis techniques, the emergence of

NRCTs introduces a number of new challenges, issues, and

concerns. While we have systematically reviewed emerg-

ing approaches to address these topics, the study of the
implications of setting, process, and connectivity on design

and analysis of networked randomized trials is still very

much in its infancy. Well-designed networked treatments

and other novel approaches to the mechanism of

randomization [64] may circumvent many of the issues

discussed here. Future research employing networked

treatment designs should thoroughly consider issues of

Walker and Muchnik: Design of Randomized Experiments in Networks

Vol. 102, No. 12, December 2014 | Proceedings of the IEEE 1949



inference in the presence of interference. More generally,
practitioners conducting NRCTs should evaluate the

suitability of the design and analysis strategies outlined

here to their particular context. The dual challenge of

estimating both the impact of experimental interventions

that can propagate and the dynamics of propagation itself

may call for the development of concurrent design

strategies that allow for simultaneous empirical inferences

on the former and the latter. The development of analysis

techniques that can discriminate between multiple models
of propagation or outcome generating processes is also an

important avenue for future research. h

Acknowledgment

The authors would like to thank J. Ugander and the

anonymous reviewer for their insightful comments and

discussion.

REF ERENCE S

[1] V. Mayer-Schönberger and K. Cukier,
Big Data: A Revolution That Will Transform
How We Live, Work, Think, 1st ed. Chicago,
IL, USA: Eamon Dolan/Houghton Mifflin
Harcourt, 2013, p. 256.

[2] F. Provost and T. Fawcett, Data Science for
Business. Sebastopol, CA, USA: O’Reilly
Media, 2013, p. 414.

[3] M. A. Hamburg and F. S. Collins, ‘‘The path to
personalized medicine,’’ New England J. Med.,
vol. 363, pp. 301–304, 2010.

[4] T. B. Murdoch and A. S. Detsky, ‘‘The
inevitable application of big data to health
care,’’ J. Amer. Med. Assoc., vol. 309, no. 13,
pp. 1351–1352, Apr. 2013.

[5] P. B. Jensen, L. J. Jensen, and S. Brunak,
‘‘Mining electronic health records: Towards
better research applications and clinical
care,’’ Nature Rev. Genetics, vol. 13, no. 6,
pp. 395–405, Jun. 2012.

[6] P. Brusilovsky, A. Kobsa, and W. Nejdl,
The Adaptive Web: Methods and Strategies of
Web Personalization. New York, NY, USA:
Springer-Verlag, 2007, p. 766.

[7] H. Chen and V. C. Storey, ‘‘Business
intelligence and analytics: From big data to
big impact,’’ MIS Quarterly, vol. 36, no. 4,
pp. 1165–1188, 2012.

[8] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
‘‘Analysis of recommendation algorithms
for E-Commerce,’’ in Proc. 2nd ACM Conf.
Electron. Commerce, 2000, pp. 158–167.

[9] J. Lampel and H. Mintzberg, ‘‘Customizing
customization,’’ MIT Sloan Manag. Rev.,
vol. 38, no. 1, pp. 21–30, 1996.

[10] G. Marcus and E. Davis, ‘‘Eight (no, nine!)
problems with big data,’’ The New York Times,
Apr. 6, 2014.

[11] D. Boyd and K. Crawford, ‘‘Six provocations
for big data,’’ Social Sci. Res. Netw. Electron. J.,
2011. [Online]. Available: http://dx.doi.org/
10.2139/ssrn.1926431.

[12] FDA Clinical Trials Guidance Documents,
2014. [Online]. Available: http://www.fda.
gov/regulatoryinformation/guidances/
ucm122046.htm

[13] R. Kohavi, ‘‘Online controlled experiments,’’
in Proc. 1st Workshop User Engagement Optim.,
2013, pp. 15–16.

[14] H. O. Stolberg, G. Norman, and I. Trop,
‘‘Randomized controlled trials,’’ Amer. J.
Roentgenol., vol. 183, no. 6, pp. 1539–1544,
2014.

[15] D. Lazer et al., ‘‘Computational social
science,’’ Science, vol. 323, no. 5915,
pp. 721–723, 2009.

[16] D. Centola and M. Macy, ‘‘Complex
contagions and the weakness of long ties,’’
Amer. J. Sociol., vol. 113, no. 3, pp. 702–734,
2007.

[17] L. Backstrom and J. Kleinberg, ‘‘Network
bucket testing,’’ in Proc. 20th Int. Conf. World
Wide Web, 2011, pp. 615–624.

[18] D. J. Watts and P. S. Dodds, ‘‘Influentials,
networks, public opinion formation,’’
J. Consum. Res., vol. 34, no. 4, pp. 441–458,
Dec. 2007.

[19] P. Dodds and D. Watts, ‘‘Universal behavior in
a generalized model of contagion,’’ Phys. Rev.
Lett., vol. 92, no. 21, 2004, DOI: 10.1103/
PhysRevLett.92.218701.

[20] R. Bond et al., ‘‘A 61-million-person
experiment in social influence and political
mobilization,’’ Nature, vol. 489, no. 7415,
pp. 295–298, 2012.

[21] S. Aral and D. Walker, ‘‘Identifying influential
and susceptible members of social networks,’’
Science, vol. 337, no. 6092, pp. 337–341,
Jul. 2012.

[22] S. Aral and D. Walker, ‘‘Creating social
contagion through viral product design: A
randomized trial of peer influence in
networks,’’ Manage. Sci., vol. 57, no. 9,
pp. 1623–1639, Sep. 2011.

[23] D. Godes, ‘‘Firm-created word-of-mouth
communication: Evidence from a field test,’’
Marketing Sci., vol. 28, no. 4, pp. 721–739,
2009.

[24] J. Goldenberg, S. Han, D. R. Lehmann, and
J. W. Hong, ‘‘The role of hubs in the adoption
process,’’ J. Marketing, vol. 73, no. 2, pp. 1–13,
2009.

[25] R. Iyengar, C. Van den Bulte, and
T. W. Valente, ‘‘Opinion leadership and
social contagion in new product diffusion,’’
Marketing Sci., vol. 30, no. 2, pp. 195–212,
2010.

[26] C. Van den Bulte and S. Wuyts, Social
Networks and Marketing. Cambridge, MA,
USA: Marketing Science Institute, 2007.

[27] A. Goyal, Social Influence and Its
Applications. Vancouver, BC, Canada: Univ.
British Columbia Press, 2013.

[28] E. Bakshy and J. Hofman, ‘‘Everyone’s an
influencer: Quantifying influence on twitter,’’
in Proc. 4th ACM Int. Conf. Web Search Data
Mining, 2011, pp. 65–74.

[29] M. Webster and J. Sell, Laboratory Experiments
in the Social Sciences. New York, NY, USA:
Academic, 2007, p. 576.

[30] A. Falk and J. Heckman, ‘‘Lab experiments are
a major source of knowledge in the social
sciences,’’ Science, vol. 326, no. 5952,
pp. 535–538, 2009.

[31] S. Levitt and J. List, ‘‘Field experiments in
economics: The past, the present, the future,’’
Eur. Econ. Rev., vol. 53, no. 1, pp. 1–18, 2009.

[32] M. Kearns, S. Suri, and N. Montfort,
‘‘An experimental study of the coloring
problem on human subject networks,’’
Science, vol. 313, no. 5788, pp. 824–827,
Aug. 2006.

[33] S. Judd, M. Kearns, and Y. Vorobeychik,
‘‘Behavioral dynamics and influence in
networked coloring and consensus,’’ Proc. Nat.
Acad. Sci. USA, vol. 107, no. 34, pp. 14978–82,
Aug. 2010.

[34] M. Kearns, S. Judd, J. Tan, and J. Wortman,
‘‘Behavioral experiments on biased voting in
networks,’’ Proc. Nat. Acad. Sci. USA, vol. 106,
no. 5, pp. 1347–1352, Feb. 2009.

[35] L. Qiu, H. Rui, and A. B. Whinston,
‘‘The impact of social network structures on
prediction market accuracy in the presence
of insider information,’’ J. Manage. Inf. Syst.,
vol. 31, no. 3, pp. 145–172, 2014.

[36] L. Qiu, H. Rui, and A. Whinston, ‘‘Effects
of social networks on prediction markets:
Examination in a controlled experiment,’’
J. Manage. Inf. Syst., vol. 30, no. 4,
pp. 235–268, 2014.

[37] G. Paolacci, J. Chandler, and P. Ipeirotis,
‘‘Running experiments on Amazon
Mechanical Turk,’’ Judgment Decision Making,
vol. 5, no. 5, pp. 411–419, 2010.

[38] M. J. Salganik, P. S. Dodds, and D. J. Watts,
‘‘Experimental study of inequality and
unpredictability in an artificial cultural
market,’’ Science, vol. 311, no. 5762,
pp. 854–856, 2006.

[39] S. Suri and D. J. Watts, ‘‘Cooperation and
contagion in web-based, networked public
goods experiments,’’ PLoS One, vol. 6, no. 3,
Mar. 2011, e16836+.

[40] W. Mason and S. Suri, ‘‘Conducting
behavioral research on Amazon’s Mechanical
Turk,’’ Behav. Res. Methods, vol. 44, no. 1,
pp. 1–23, 2012.

[41] D. Centola, ‘‘The spread of behavior in an
online social network experiment,’’ Science,
vol. 329, no. 5996, pp. 1194–1197, Sep. 2010.

[42] D. Centola, ‘‘An experimental study of
homophily in the adoption of health
behavior,’’ Science, vol. 334, no. 6060,
pp. 1269–1272, Dec. 2011.

[43] D. Centola and A. van de Rijt, ‘‘Choosing your
network: Social preferences in an online
health community,’’ Social Sci. Med.,
May 2014, DOI: 10.1016/j.socscimed.2014.
05.019.

[44] R. Bapna, A. Gupta, S. Rice, and
A. Sundararajan, ‘‘Trust, reciprocity and the
strength of social ties: An online social
network based field experiment,’’
working paper, Jul. 2011.

[45] J. Wang, S. Suri, and D. J. Watts,
‘‘Cooperation and assortativity with dynamic
partner updating,’’ Proc. Nat. Acad. Sci. USA,
vol. 109, no. 36, pp. 14363–14368, Sep. 2012.

[46] G. Harrison and J. List, ‘‘Field experiments,’’
J. Econ. Lit., vol. 42, no. 4, pp. 1009–1055,
2004.

[47] D. Edwards, I’m Feeling Lucky: The Confessions
of Google Employee Number 59, 1st ed.
Chicago, IL, USA: Houghton Mifflin
Harcourt, 2011, p. 432.

[48] R. Kohavi et al., ‘‘Trustworthy online
controlled experiments,’’ in Proc. 18th ACM
SIGKDD Int. Conf. Knowl. Disc. Data Mining,
2012, pp. 786–794.

[49] E. Bakshy, D. Eckles, and M. Bernstein,
‘‘Designing and deploying online field

Walker and Muchnik: Design of Randomized Experiments in Networks

1950 Proceedings of the IEEE | Vol. 102, No. 12, December 2014



experiments,’’ in Proc. 23rd Int. Conf. World
Wide Web, 2014, pp. 283–292.

[50] A. D. I. Kramer, J. E. Guillory, and
J. T. Hancock, ‘‘Experimental evidence of
massive-scale emotional contagion through
social networks,’’ Proc. Nat. Acad. Sci. USA,
vol. 111, no. 24, pp. 8788–9790, Jun. 2014.

[51] S. Harriman and J. Patel, ‘‘The ethics and
editorial challenges of internet-based
research,’’ BMC Med., vol. 12, no. 1, Jul. 2014,
DOI:10.1186/s12916-014-0124-3.

[52] R. Bapna, J. Ramaprasad, G. Shmueli, and
A. Umyarov, ‘‘One-way mirrors and
weak-signaling in online dating: A randomized
field experiment,’’ working paper, 2013.

[53] E. Bakshy, D. Eckles, R. Yan, and I. Rosenn,
‘‘Social influence in social advertising:
Evidence from field experiments,’’ in Proc.
13th ACM Conf. Electron. Commerce, 2012,
pp. 146–161.

[54] E. Bakshy, I. Rosenn, C. Marlow, and
L. Adamic, ‘‘The role of social networks in
information diffusion,’’ in Proc. 21st Int. Conf.
World Wide Web, 2012, pp. 519–528.

[55] S. Taylor, E. Bakshy, and S. Aral, ‘‘Selection
effects in online sharing: Consequences for
peer adoption,’’ in Proc. 14th ACM Conf.
Electron. Commerce, 2013, pp. 821–836.

[56] S. Taylor, L. Muchnik, and S. Aral, ‘‘Identity
and opinion: A randomized experiment,’’
working paper, 2014.

[57] S. Aral, L. Muchnik, and A. Sundararajan,
‘‘Engineering social contagions: Optimal
network seeding and incentive strategies,’’
Netw. Sci., vol. 1, no. 2, pp. 125–153,
Feb. 2013.

[58] S. E. Asch, ‘‘Effects of group pressure upon the
modification and distortion of judgment
Groups, Leadership and Men. Pittsburgh, PA,
USA: Carnegie Press, 1951, pp. 177–190.

[59] S. Milgram, L. Bickman, and L. Berkowitz,
‘‘Note on the drawing power of crowds of
different size,’’ J. Personality Social Psychol.,
vol. 13, no. 2, pp. 79–82, 1969.

[60] M. Salganik and D. Watts, ‘‘Leading the herd
astray: An experimental study of self-fulfilling
prophecies in an artificial cultural market,’’
Social Psychol. Quarterly, vol. 71, no. 4,
pp. 338–355, 2008.

[61] L. Muchnik, S. Aral, and S. Taylor, ‘‘Social
influence bias: A randomized experiment,’’
Science, vol. 341, no. 6146, pp. 647–651, 2013.

[62] M. Godinho de Matos, P. Ferreira,
M. D. Smith, and R. Telang, ‘‘Culling the
herding: Using real world randomized
experiments to measure social bias with
known costly goods,’’ Social Science Research
Network (SSRN) working paper, May 2014.

[63] R. Bapna and A. Umyarov, ‘‘Are paid
subscriptions on music social networks
contagious? A randomized field experiment,’’
Carlson School Manage., Univ. Minnesota,
Minneapolis, MN, USA, SOBACO working
paper, 2012.

[64] S. Aral and D. Walker, ‘‘Tie strength,
embeddedness, social influence: A large-scale
networked experiment,’’ Manage. Sci., vol. 60,
no. 6, pp. 1352–1370, Jun. 2014.

[65] C. F. Manski, ‘‘Identification of endogenous
social effects: The reflection problem,’’ Rev.
Econ. Studies, vol. 60, no. 3, pp. 531–542,
1993.

[66] S. Aral, L. Muchnik, and A. Sundararajan,
‘‘Distinguishing influence-based contagion
from homophily-driven diffusion in dynamic
networks,’’ Proc. Nat. Acad. Sci USA, vol. 106,
no. 51, pp. 21544–21549, 2009.

[67] C. R. Shalizi and A. C. Thomas, ‘‘Homophily
and contagion are generically confounded in
observational social network studies,’’ Sociol.
Methods Res., vol. 42, no. 2, pp. 211–239,
2011.

[68] D. R. Cox, Planning of Experiments. New
York, NY, USA: Wiley-Interscience, 1958,
p. 320.

[69] D. Rubin, ‘‘Bayesian inference for causal
effects: The role of randomization,’’ Ann. Stat.,
vol. 6, no. 1, pp. 34–58, 1978.

[70] C. F. Manski, ‘‘Identification of treatment
response with social interactions,’’ Econom. J.,
vol. 16, no. 1, pp. S1–S23, Feb. 2013.

[71] P. M. Aronow and C. Samii, ‘‘Estimating
average causal effects under general
interference,’’ in Proc. Summer Meeting Soc.
Political Methodol., 2012, pp. 19–21.

[72] D. Eckles, B. Karrer, and J. Ugander, ‘‘Design
and analysis of experiments in networks:
Reducing bias from interference,’’ working
paper, 2014, p. 29.

[73] A. Coppock and N. Sircar, ‘‘Design of field
experiments under unknown interference
structures,’’ working paper, 2013.

[74] L. Katzir, E. Liberty, and O. Somekh,
‘‘Framework and algorithms for network

bucket testing,’’ in Proc. 21st Int. Conf. World
Wide Web, 2012, pp. 1029–1036.

[75] J. Ugander, B. Karrer, L. Backstrom, and
J. Kleinberg, ‘‘Graph cluster randomization:
Network exposure to multiple universes,’’ in
Proc. 19th ACM SIGKDD Int. Conf. Knowl. Disc.
Data Mining, 2013, pp. 329–337.

[76] E. Airoldi, P. Toulis, E. Kao, and D. B. Rubin,
‘‘Estimation of causal peer influence effects,’’
J. Mach. Learn. Res., vol. 28, no. 3,
pp. 1489–1497, 2013.

[77] A. C. Thomas and M. Finegold, ‘‘Protocols for
randomized experiments to identify network
contagion,’’ working paper, 2013, p. 13.

[78] J. Nishimura and J. Ugander, ‘‘Restreaming
graph partitioning: Simple versatile
algorithms for advanced balancing,’’ in Proc.
19th ACM SIGKDD Int. Conf. Knowl. Disc. Data
Mining, 2013, pp. 1106–1114.

[79] D. Eckles and E. Bakshy, ‘‘Bias and
high-dimensional adjustment in observational
studies of peer effects,’’ working paper, 2014.

[80] M. J. Salganik and D. D. Heckathorn,
‘‘Sampling and estimation in hidden
populations using respondent-driven
sampling,’’ Sociol. Methodol., vol. 34, no. 1,
pp. 193–240, Dec. 2004.

[81] M. Gjoka, M. Kurant, C. T. Butts, and
A. Markopoulou, ‘‘A walk in Facebook:
Uniform sampling of users in online social
networks,’’ working paper, May 2009.

[82] D. Godes et al., ‘‘The firm’s management of
social interactions,’’ Marketing Lett., vol. 16,
no. 3/4, pp. 415–428, 2005.

[83] S. Aral and S. Taylor, ‘‘Viral incentive systems:
A randomized field experiment,’’ Stern School
Business, New York Univ., working paper,
2014.

[84] G. Pickard et al., ‘‘Time-critical social
mobilization,’’ Science, vol. 334, no. 6055,
pp. 509–512, Oct. 2011.

[85] E. Bakshy and D. Eckles, ‘‘Uncertainty in
online experiments with dependent data: An
evaluation of bootstrap methods,’’ in Proc.
19th ACM SIGKDD Int. Conf. Knowl. Disc. Data
Mining, 2013, pp. 1303–1311.

ABOUT T HE AUTHO RS

Dylan Walker, received the Ph.D. degree in physics

from Stony Brook University, Stony Brook, NY, USA.

He is an Assistant Professor at the School of

Management in the Department of Information

Systems, Boston University, Boston, MA, USA and

a Junior Fellow of the Rafik B. Hariri Institute for

Computing and Computational Science & Engi-

neering. Between 2008 and 2012, he was a

Research Scientist at the Information, Operations

Management and Statistics Department, Leonard

N. Stern School of Business, New York University, New York, NY, USA. His

research broadly seeks to understand the role of networks and

networked systems in the diffusion of information, behaviors, and

dynamic processes. His recent work has focused on understanding the

dynamics of social influence and peer effects in social networks through

large-scale randomized controlled trials. Jointly with collaborators, he

has conducted several large-scale randomized controlled trials to

understand the dynamics of viral product design and to identify the

dependence of peer influence on individual and relationship character-

istics in online social networks.

Lev Muchnik, received the Ph.D. degree in

physics from Bar Ilan University, Tel Aviv, Israel.

He is a Senior Lecturer at the School of

Business Administration, Internet Studies Depart-

ment Hebrew University of Jerusalem, Jerusalem,

Israel. Between 2008 and 2012, he was a Senior

Research Scientist at the Information, Operations

Management and Statistics Department, Leonard

N. Stern School of Business, New York University,

New York, NY, USA. His expertise lies in the

collection and analysis of massive data sets representing large-scale

social systems, and their modeling using tools borrowed from social

sciences and statistical physics. His recent work has been focused on

theoretical and empirical problems related to the structure and evolution

of social networks, as well as peer effects, the spread of behavioral

norms, information diffusion, and other processes specific to networked

environments. Jointly with collaborators, he developed a seminal

method for the identification of peer influence in networks, and

conducted large-scale randomized controlled experiments in online

communities.

Walker and Muchnik: Design of Randomized Experiments in Networks

Vol. 102, No. 12, December 2014 | Proceedings of the IEEE 1951



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


